
WIDE: Worksheet Integrated Development
Environment for Arduino-based Embedded System

Design

N. Ioannou, K. Tatas, A. Constantinides and C. Kyriacou,
Frederick University,

Nicosia, Cyprus
st020063@stud.frederick.ac.cy

{com.tk, com.ca , eng.kc}@.frederick.ac.cy

Abstract—This paper presents a novel programming

approach for Arduino boards, utilizing tables within a
spreadsheet environment. This method automatically generates
over 80% of the code in a typical application, simplifying
programming, facilitating debugging and presenting an easier
learning curve, especially for non-electronics and computer
science engineers. WIDE supports defining analog and digital
pins, logical variables, state description, state flow, printing,
menu, Infrared communication, Bluetooth, RS485
communication, and storing variables in EEPROM using tables
that are easy to fill, modify and troubleshoot. The automatically
generated code is collected into one worksheet and then copied to
the Arduino IDE for compilation and downloading. This method
has been successfully applied to various projects, allowing more
time to be spent on problem-solving rather than the mechanics of
code writing.

Keywords—Microcontrollers, IDE, Arduino, WIDE,
spreadsheet.

I. INTRODUCTION

Embedded systems integrate hardware and software for
operation in a physical environment and fulfill requirements
for function, safety, durability, sustainability, user-
friendliness, interfaces to other systems, regulations and
standards [1]. They have long been used in aerospace,
manufacturing, enterprise and consumer machines. More
recently, they have also been used in smart homes, renewable
energy systems, electric vehicles and the Internet of Things
[2].

The complexity of programming embedded systems
increases when they are used in demanding environments
such as aerospace or self-driving cars. In less demanding
environments such as agriculture, the complexity arises from
the interaction with various sensors, actuators and
communication with an IoT platform, as well as the need for
a human-machine interface and the constant updating of
designs due to the rapid advancement of technology.

As quoted in [1], "Unfortunately, embedded systems are
hardly covered in the 2013 edition of the Computer Science
Curriculum, as published by ACM and the IEEE Computer
Society [10]. However, the growing number of applications
results in the need for more education in this area.”
Embedded systems courses in 2005 [3], before the
announcement of Arduino [4, 5], were aimed at electrical
engineering and computer science students and were
redesigned to cover both software and hardware in the same
subject [6]. Arduino was launched in 2005 and was based on

Hernando Barragan's master's thesis with the aim of enabling
designers (artists) to “explore electronic art and tangible
media” [7]. In 2024, almost twenty years after the
introduction of Arduino, courses on embedded systems are
taught in biology [8], in courses for students of all disciplines
in universities [9], in physics departments [10], in MOOC
platforms for anyone without any prerequisite [11], in
secondary schools and the audience is practically everyone.
The Arduino software is so popular that it was downloaded
39 million times last year alone [12].

Since a large part of Arduino's target audience are not
electronics and computer science engineers, and since the
development of embedded/IoT applications is also extending
to other disciplines, work is constantly being done to
simplify programming. Some development environments for
Arduino include visual programming environments with
function blocks and some other development environments
with block instructions that generate code that can be used in
the Arduino IDE.

Programming without code is considered by some to be
easier and this is the approach of XOD [13]. XOD is a visual
programming language for microcontrollers, including
Arduino. XOD is a block module programming environment
that resembles an electrical schematic. In XOD, functions are
blocks that have connections for inputs, outputs and other
parameters to which wires can be connected. Arguments and
data are transferred from one block to another via wires. It is
comparable to the ladder diagram and the function languages
of the PLC. The disadvantage is that the programmer has to
learn the function of the individual blocks and the type of
connection. The program is not written anywhere, it is in the
design and the programmer has to follow the wires to
describe what the program does.

With the Arduino PLC IDE, Arduino can be programmed
in IEC 61131-3 standard languages. PLC programming has
definitely proven itself so that engineers without
programming skills can also use it. It has similar
disadvantages to the visual programming languages.

Then there are a number of textual programming
languages with text encapsulated in graphical blocks such as
MicroBlocks [14], Ardublockly [15] and Ottodiy Software
[16], descendants of Blocky by Google, which encapsulate
the instructions in blocks. Programming languages with
block statements protect the programmer from typing errors
and from mixing different types of variables. It is very easy
for the programmer to create new functions, which also look

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

better and are more user-friendly than in pure text languages,
as each parameter can be preceded by a text. The downside is
that a lot of coding is required and the program is in the
canvas, so the programmer has to zoom in and out and move
left and right to find specific code.

In this paper, we present a CAD tool for programming
Arduino using tables that automatically generate code and
are easy to fill in, understand, modify and troubleshoot
intuitively. The environment in which the programming is
done is a spreadsheet in LibreOffice, which we call WIDE,
an acronym for Worksheet Integrated Development
Environment. In Wide, the programmer can develop a
program with all the expected features such as modularity,
human interface, retention of user variables, fail-safety,
statistics and different communication modes, automating up
to 80% of the code.

The target group of the WIDE presented here is the entire
Arduino community. The goal is to develop an environment
in which most of the program is written in tables and the
code is generated automatically. Filling in tables to configure
a device or program a system is used in many industrial and
commercial products as it is easier for the user as many
details are hidden from him.

The rest of the article is organized as follows: Section II
is the general description of the Arduino IDE spreadsheet
preprocessor WIDE, Section III describes in detail how to set
the input and output ports, Section IV describes how to
implement the finite state machine model using three tables,
Section V describes how to set the variables, Section VI
describes how to write part of the program in free text instead
of tables, Section VII describes how to download the
program to the microcontroller, and Section VIII summarizes
the results and discusses future work.

II. GENERAL DESCRIPTION OF WIDE (WORKSHEET

INTEGRATED DEVELOPMENT ENVIRONMENT)

In this paper, we present the WIDE programming
environment, a preprocessor for the Arduino IDE. The
program is developed in different worksheets, and all
program segments from the various worksheets are copied to
a worksheet titled "AllProgram," which contains the entire
program code. The program is then copied and pasted into
the Arduino IDE for compilation and downloading to the
board.

The programmer fills in tables in all but two worksheets,
and the code is generated automatically. The programmer
writes free text in worksheets labeled "functions" and
"config" where they write user-defined functions.

WIDE uses the finite state machine paradigm for
generating code. Finite state machines are a model of
computation commonly used in embedded systems, that
models the system as a set of states and transitions between
them. WIDE generates code automatically if the programmer
fills in three tables, one for the state description and two for
the sequence of states.

The most important categories of worksheets are for:

 the definition of the input and output pins and
the associated variables (pinsAnalog,
pinsDigital),

 setting the states and the flow between the
states (stateDescr, stateFlow, Emergency (flow
for emergency states)),

 the setting of logical variables
(variablesLogical),

 writing free text as in the Arduino IDE
(functions, config),

 provision of a human-machine interface (print,
Menu, LCD_I2C_2x16)),

 provision of communication (serialRead, I2C,
IRread),

 setting the main functions of an Arduino
program (setup, loop).

III. WORKSHEETS FOR SETTING THE INPUT AND OUTPUT PINS

AND THE ASSOCIATED VARIABLES

The first phase in the development of a microcontroller
project is the ideation phase where the problem and the
solutions are formulated. Actions and measurements need to
be performed for the project, with actions linked to the output
pins of the microcontroller and measurements linked to the
input pins. Instead of making notes on a piece of paper, the
programmer can open the WIDE spreadsheet and start filling
in tables with the setting information for the pins, having
their notes in spreadsheet format (as shown in Fig. 1).

WIDE has two worksheets, two tables, one for setting
analog signals and one for setting digital signals, where
digital signals are inputs as well as outputs and PWM (Pulse
Width Modulation = analog output signals).

Fig. 1. Setting up analog pins (one table shown in two pict.)

To set up the analog signals, the programmer opens the
“pinsAnalog” worksheet shown in Fig. 1. In the “ "Arduino
pins" column, the name of the pin used in the “pinMode(An,
INPUT)” command is entered. On the Arduino UNO, the
analog pins are called “An,” while on other boards, they are
simply named with a number. If a shield is connected to the
board, the pin of the shield connected to the board’s pin is
described in the “Shield pins” column. The “Comments”
column contains all useful information about the pin, such as
its function, the range of physical properties, and the
associated electrical properties.

The "Names in program" column is the name actually
used in the program. In the ideation phase, some
programmers make up names and then use similar names in
the actual program, which can lead to confusion. In WIDE,
the name entered in the table during the ideation phase is
exactly the same as in the program.

The "Energized state" column is used to create Boolean
variables from analog values, as shown in line 3 for input pin
"A2". This is useful if a signal is to be considered LOW (0
volts) at a value other than 0 volts. The column "Create
variable of previous value" creates a variable with the value
of the previous cycle of the program so that the rise and fall

of signals can be detected. The column "Activate pull-up
resistor” is used to activate the pull-up resistor and is mainly
used for inputs that are not connected so that they do not
receive stray signals that would lead to random values.

After entering the data for the analog signals, the
programmer enters the names of the digital pins that serve as
input or output. All analog signals that were not used as
analog can be used as digital in the AVR and other board
families and can be programmed as digital in WIDE.

In addition, further input and output pins can be labeled
as the project is refined.

The WIDE programming environment simplifies the
process of setting up input and output pins and associated
variables, allowing programmers to organize their projects
more efficiently. The use of a spreadsheet-based
preprocessor provides a structured approach to programming,
making it easier for inexperienced programmers to develop
microcontroller projects.

IV. WORKSHEETS FOR DEFINING STATE DESCRIPTIONS AND

SEQUENCES (STATE TRANSITIONS)

With the finite state machine model, a complicated task is
broken down into a series of smaller subtasks, each of which
is executed in its own state. States are like self-contained
microworlds that act on a discrete small task; actions take
place in the state or during the transition to the state. Only
one state is active at a time. A state stops executing its
commands and control is transferred to another state when a
trigger, Boolean variable or Boolean expression, or
combination of triggers becomes active. Before entering a
new state, a configuration takes place to prepare the
environment of the new state that is about to become active.

The finite state machine model encourages programmers
to focus on specifying each individual state and its
transitions, which is typically easier to debug than the entire
program. By breaking down the program into smaller, more
manageable states, the programmer can concentrate on each
state’s specific functionality and ensure that it operates
correctly. Additionally, the finite state machine model
encourages programmers to consider all possible tasks and
connections between them [17], promoting a more
comprehensive and systematic approach to programming.
This approach can help identify potential issues early on and
ensure that the program functions as intended. As a result,
the finite state machine model is a powerful tool for
designing and implementing complex systems with multiple
states and tasks.

The programmer can start by enumerating the states in
the "stateDecr" tab shown in Fig. 2. For example, to control a
garage door, the programmer can think of the different states
that the door goes through: StOpened, StClosing, StClosed,
StOpening as shown in Fig. 2, where St in front of the words
stands for State.

Fig. 2. State description worksheet

A number defining the state is selected in the "Value of
state variable" column, with numbers selected in ascending
values in steps of 10 so that later, when a state needs to be
divided into smaller states, a number in the same region is
available. There is an associated name for each state number,
and a description in words that is not translated into code.

The "LoopOfOperation" column is then filled with the
actions (outputs) that are executed during the active state.
The next column "LoopOfChangeState" is filled with all
actions (outputs) that are executed during the transition to the
state.

Fig. 3. State flow, transitions from state to state

The "stateFlow" worksheet shown in Fig. 3 records all
transitions in a table format. The number of the state is
entered in the "State number" column and the name of the
state automatically appears in the "State name" column. A
Boolean variable or a Boolean expression is entered in the
"Trigger" column which, if true, controls the transition to the
state in the "New state number" column. In the last column,
the programmer adds notes to describe the transition in more
detail.

Fig. 4. Emergency states and transitions to them

In microcontroller systems and machines in general, there
are emergencies that must be reacted to immediately, e.g. by
an emergency stop switch. In WIDE, an emergency situation
generates a trigger and transfers control to a state that handles
the emergency situation, regardless of which state the
program is currently in. The “Emergency” worksheet shown
in Fig. 4 is the transition flow for the emergency states,
which is the same as the "stateFlow" worksheet, but a zero is
entered in the first column "State number", which stands for
any state. When the corresponding trigger is activated, the
control is transferred to the state in the “New state number”
column.

The finite state machine model used in WIDE supports
both a Moore and Mealy [17] type finite state machine
model. Microcontrollers have analog values, and therefore,
the models also have analog values, making the model a
finite state machine with data paths [17]. According to
Harel's work, the emergency states in WIDE are extensions
of the state machine model to support a hierarchical structure
[17]. This hierarchy allows the programmer to combine
multiple states into a new hierarchical state, with all states
except the emergency states being combined into a new
hierarchical state.

The WIDE programming environment simplifies the
process of defining state descriptions and sequences,
allowing programmers to organize their projects more
efficiently. The use of a spreadsheet-based preprocessor
provides a structured approach to programming, making it
easier for inexperienced programmers to develop
microcontroller projects.

V. WORKSHEETS FOR DEFINING VARIABLES

In visual programming languages, the function blocks are
connected with wires, and similarly, the functions in text

languages are connected with variables. The first variables
are declared when configuring the input and output ports.
Each value of an input pin is transferred to a variable and
each value of an output pin is loaded from a variable. Once in
each cycle, all inputs and outputs are updated by their
corresponding variables.

Fig. 5. Defining the variables (one table shown in two pict.)

Logical variables are created in a special worksheet
"variablesLogical" in the form of a table, as shown in Fig. 5.
In the "Name" column, the name of the variable is specified,
then some information about its use, type and optionally an
initial value. The next three columns "Update formula" are
optional and a formula is entered there to update this
variable. In the next column, which is also optional, a
condition is entered that determines when the variable is
updated. If the column remains empty, the variable is always
updated. The feature to update the logical variables
automatically and in every cycle was developed from the
experience of several projects. The code for declaring the
variables and the corresponding update formula are created
automatically. There are also some other specific variable
types that are created in special tabs, e.g. variables used in
timers that are created in the "variablesTime" tab and
statistics variables that are created in the "variableStatistics"
tab and others.

VI. WORKSHEETS FOR WRITING FREE TEXT

If the programmer needs to write actual code, there is a
special tab for writing free text, i.e. as it is written in the
Arduino IDE. The new code is written in the form of
functions on the "Functions" worksheet. The newly created
functions are entered in a list and the programmer can select
them for use in other tabs such as the state-related tabs.

There is also a special category of functions that are
entered as free text on the "Configuration" tab shown in Fig.
6, they are used to set up some variables before starting a
new state. In the garage door project, for example, the
direction of rotation of the motor is set differently when
closing and opening the door. As the functions are mainly
about setting variables, the columns "Variable",
"Assignment","Value","Variable" are used for assigning
variables and values to make it easier for the programmer. In
the "Variable" column, the programmer selects from the
existing variables in the project.

Fig. 6. Worksheet "Configuration", for defining environment variables
before starting a state

The WIDE programming environment provides a
dedicated space for writing and organizing free text code,
allowing programmers to develop and integrate custom
algorithms seamlessly. Additionally, the ability to configure
environment variables before starting a new state streamlines

the development process, enhancing the overall efficiency
and organization of the project.

VII. DOWNLOADING THE PROGRAM TO THE BOARD AND

DEBUGGING

The program is written automatically when the worksheets
are filled with data. There are two important worksheets that
are filled in automatically. One is the "Setup" worksheet,
which collects all the setup instructions from the other
worksheets and transfers their contents to the setup function
of the Arduino program. In this worksheet there are also
some rows where the programmer can add commands that
need to be executed during setup.

Fig. 7. Arduino function "Loop", continuously executed functions in the loop
function

The other worksheet is the "Loop" shown in Fig. 7, where
all the functions to be executed in the Arduino function loop
are collected. In this loop, the commands are entered in the
order in which they are to be executed. First, the digital
inputs are transferred to the corresponding variables and the
output pins are updated with the values of the corresponding
variables that were calculated in the previous run shown in
rows 2 and 3. Then the differential variables are calculated
from the current values and the previous values of the input
and output variables, as shown in rows 4 and 5. The logical
variables are updated in row 6, taking into account the
variables updated variables above in rows 2 to 5. This is
followed by further updates for variables and communication
channels shown in rows 7 to 12, followed by some empty
lines for the programmer or for future additions to WIDE.
Then there is a check for emergency signals that could put
the program into an emergency state (row 20). This is
followed by the actual operation "LoopOfOperation()" in the
state that was selected in the previous cycle and whose code
can be found in the "stateDescr" worksheet. Then the
"LoopOfStateFlow()" function determines whether there is a
transition to a new state. Finally, the variables containing the
values of the variables from the previous cycle are updated
shortly before the end of the loop in rows 24 and 25. Column
"Formula of col. A" contains the formula contained in
column "A" as well as the tabs from which the code is
collected. Column "D" contains the code that is inserted in
the tab containing the entire program.

When a macro is activated, the worksheet is saved and the
entire program is copied from the first tab. The program is
then pasted into the Arduino IDE using the key combination
“Ctrl-A,Ctrl-V,Ctrl-S”. The entire file is first selected, then
the clipboard is pasted and then saved. The program is
downloaded from the Arduino IDE to the board.

During the compilation phase, the Arduino IDE creates an
error list in which the line number and the type of error are
specified. Using the line number, the programmer can find
the code in the same line number in the "AllProgram"

worksheet, where all the code is located. Next to the code is a
formula that shows the worksheet and the cell from which
the code was copied. Each tab fulfills a specific task, so that
the error is contained in its environment and can logically be
corrected. Experience with WIDE has shown that it is easy to
correct errors.

In WIDE it is easy to add print statements and interactive
menus so that the programmer can interact with the program.
WIDE has no breakpoints, but it is easy to set interactive
menus in different states.

The WIDE programming environment has a simple process
of downloading the program to the board and debugging,
allowing programmers to develop and test their
microcontroller projects efficiently. The use of a spreadsheet-
based preprocessor provides a structured approach to
programming, making it easier for inexperienced
programmers to develop microcontroller projects.

VIII.CONCLUSION

This article introduces a Worksheet Integrated
Development Environment (WIDE) that acts as a
preprocessor for the Arduino IDE and supports a finite state
machine model with data paths and a hierarchical state
model. The proposed integrated worksheet development
environment can be used to easily teach undergraduate and
graduate students how to program Arduino-based
microcontrollers.

By automatically generating the code, syntactical errors
are avoided, which leads to early success and encourages the
programmer to add more features and complete a project
with many functions. The programmer is expected to be
familiar with variables, logical expressions, logical
comparisons and simple math skills.

The programmer begins with WIDE in the idea phase by
filling the tables with variables and states to create a very
simple project that they can test and debug, then add more
variables and states. Incremental development makes
debugging a project much easier and success is an important
factor for engagement in this area.

In the future, more projects need to be developed in WIDE
for a variety of Arduino-based boards to test the method for
ease of programming. The use of WIDE provides a
structured approach to programming, making it easier for
inexperienced programmers to develop microcontroller
projects.

Overall, the WIDE programming environment provides a
powerful tool for developing microcontroller projects,
simplifying the process of programming and testing, and
encouraging engagement and success among students and
hobbyists alike.

References

[1] P. Marwedel,”Embedded System Design - Embedded Systems
Foundations of Cyber-Physical Systems, and the Internet of Things”,
Fourth ed. Springer, 2021, pp 7.

[2] P. Marwedel,”Embedded System Design - Embedded Systems
Foundations of Cyber-Physical Systems, and the Internet of Things”,
Fourth ed. Springer, 2021, pp VII.

[3] P. Caspi, J. Jackson, “2005 Workshop on Embedded Systems
Education”, (a satellite event of EMSOFT 2005), New Jersey, 2005

[4] H. Barragán, "The Untold History of Arduino",
https://arduinohistory.github.io/, (retrieved Jan. 29, 2024)

[5] M. Banzi, "History of Arduino", https://forum.arduino.cc/t/history-of-
arduino/118744 (retrieved on Jan. 29, 2024.

[6] P. Marwedel, “Towards a common basis for education in embedded
systems development”, presented at the “2005 Workshop on
Embedded Systems Education”, NJ, USA, .

[7] Hernando Barragán, “Wiring: Prototyping Physical Interaction
Design”, Dissertation, | Interaction Design Institute Ivrea | June 2004,

[8] "Engineering Biology in Cambridge",
https://www.engbio.cam.ac.uk/news/no-code-programming-biology-
workshop-recordings- now-available Cambridge College (retrieved
Jan. 29, 2024)

[9] "Eduino project at the University of Edinburgh",
https://eduino.ed.ac.uk/wp/, (retrieved Jan. 29, 2024)

[10] Furman University, "PHY-433 Introduction to Embedded Systems",
https://catalog.furman.edu/preview_course_nopop.php?
catoid=17&coid=33815, (retrieved Jan. 29, 2024)

[11] Coursera, Univeristy of Irvine, California,"An introduction to
programming in the Internet of Things (IOT)specialization",
https://www.coursera.org/specializations/iot, (retrieved Jan. 29, 2024)

[12] Arduino, "Announcing the Arduino IDE 2.0 (beta)",
https://blog.arduino.cc/2021/03/01/announcing-the-arduino-ide-2-0-
beta/, (retrieved Jan. 29, 2024)

[13] XOD. "A visual programming language for microcontrollers",
https://xod.io/ (retrieved Jan. 29, 2024)

[14] "MicroBlocks is a blocks programming language for physical
computing inspired by Scratch", https://microblocks.fun/, (retrieved
Jan. 29, 2024)

[15] "Ardublockly Visual Programming for Arduino",
https://ardublockly.embeddedlog.com/index.html, (retrieved Jan. 29,
2024)

[16] Ottodiy, "Standalone software for coding robots and IoT projects",
https://www.ottodiy.com/software (retrieved Jan. 29, 2024)

[17] F. Vahid and T. Givargis, "Embedded System Design: A Unified
Hardware/Software Approach", http://dsp-book.narod.ru/ESDUA.pdf,
1999, pp 8-5

https://ardublockly.embeddedlog.com/index.html
https://microblocks.fun/

	I. Introduction
	II. General description of WIDE (Worksheet Integrated Development Environment)
	III. Worksheets for setting the input and output pins and the associated variables
	IV. Worksheets for defining state descriptions and sequences (state transitions)
	V. Worksheets for defining Variables
	VI. Worksheets for writing free text
	VII. Downloading the program to the board and debugging
	VIII. Conclusion

